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Abstract. Piecewise deterministic Markov processes (PDMPs) can be used to model com-
plex dynamical industrial systems. The counterpart of this modeling capability is their simula-
tion cost, which makes reliability assessment untractable with standard Monte Carlo methods.
Indeed, the failure of a complex system is a rare event and estimating the probability of its
occurrence using a Monte Carlo method requires the simulation of a very large number of
trajectories of the underlying process. A significant variance reduction can be obtained with
a well-calibrated importance sampling method. It is known that the optimal distribution for
importance sampling depends explicitly on the committor function of the PDMP. Fault tree
analysis offers us elegant tools to approximate this committor function. We present an adaptive
importance sampling (AIS) method based on a cross-entropy (CE) procedure for sequentially
refining the approximation of the committor function. The method is tested on a system from the
nuclear industry: the spent fuel pool.
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1 INTRODUCTION

Our work aims to evaluate the reliability of complex dynamic industrial systems that play
a crucial role in nuclear power plants and dams. These systems can experience critical failure
when one or more continuous physical variables, such as temperature or pressure, exceed a crit-
ical threshold. This threshold can only be reached after the deterioration of some key sets of
system components, which have discrete states that change due to random point events such as
failures, repairs, and control mechanisms. The continuous physical variables evolve according
to deterministic differential equations that depend on the state of the system’s components. This
hybrid behavior leads us to model the system’s state over time using a piecewise deterministic
Markov process (PDMP) [1].

However, assessing the reliability of such systems is challenging. Experimental data may
not be available, and the complexity of a PDMP makes it impossible to compute the probability
of system failure. Numerical simulations are therefore often used. But in industries, critical
failures are rare events, and the estimation of a rare event probability requires a large number of
simulations when using crude Monte Carlo methods (CMC). Furthermore, solving the differen-
tial equations involved in PDMP simulations can be computationally intensive, which further
increases simulation time. To reduce the number of simulations, we propose an importance
sampling method. The role played by the committor function of the process in the optimal im-
portance sampling distribution has been well described in [3]. The committor function returns
the probability that a PDMP trajectory realizes the rare event of interest (in our case, system
failure) given its state at a given instant. The key point of our method is to propose a relevant
approximation of this committor function to build a parametric family of importance distribu-
tions.

A good approximation of the committor function should measure in some sense the level of
degradation of the system. We use a reliability methodology called fault tree analysis [5] to
determine the minimal path sets (MPS) of the system, which are the sets of components that
ensure the proper functioning of the system. Each MPS can be seen as a barrier that the process
must cross to reach system failure. We propose a parametric family of approximations of the
committor function based on the MPS decomposition of the system, along with the correspond-
ing family of importance distributions. We use the cross-entropy procedure [2] to sequentially
determine the best representative of this family of importance distributions. By recycling past
samples, we estimate the probability of system failure without additional draws while preserv-
ing the consistency and asymptotic normality of the final estimator [6]. We obtain, in practice,
a variance reduction of the order of 10,000 compared to a crude Monte Carlo method on a test
case from the nuclear industry: the spent fuel pool [7].

The paper is organized as follows. Section 2 provides the main definitions and results on
PDMPs and presents a typical industrial system, the spent fuel pool, as an example. Section 3
explains the role of the committor function in the optimal distribution for importance sampling.
Section 4 describes the reliability notion of minimal path sets from fault tree analysis and how
we use it to build a family of approximations of the committor function. Our cross-entropy
algorithm with recycling of past samples is presented in section 5, along with the theorem
ensuring convergence and asymptotic normality of the estimator produced. In section 6, we test
the method on the spent fuel pool and compare it for different sample sizes to a CMC method.
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We conclude in section 7.

2 PIECEWISE DETERMINISTIC MARKOV PROCESS

The state of the PDMP at time t ≥ 0 is denoted by Zt = (Xt,Mt) ∈ E where Xt ∈ X ⊂ Rdx

is the position and Mt ∈ M is the mode of the PDMP (with M finite or countable and E =
X × M). Let tmax > 0, we note from now Z := (Zt)t∈[0,tmax] a PDMP trajectory of duration
tmax. The behavior of the process is fully characterized by three functions:

1. The flow Φ that gives the deterministic trajectory.

2. The jump intensity λ that gives the distribution of the times of the random jumps.

3. The transition jump kernel K that gives the distribution of the location of the process after
a jump.

Flow function Φ. The position Xt of the PDMP follows a partial differential equation parametrized
by the mode m ∈ M which remains constant between two jumps. The solution function of this
partial differential equation is noted ϕm. Starting from a state z = (x,m) ∈ E, the flow function
Φz = Φx,m : t 7−→ (ϕm(x, t),m) indicates thus in the absence of jump the state of the process
after a time t > 0. Solving the PDEs is often the most expensive step in simulating the PDMPs
that interest us, as it may necessitate the use of powerful physical computer codes.

If the state space has boundaries (noted ∂E), the process jumps when it reaches them. For
any starting state z ∈ E we define t∂z := inf{t > 0 : Φz(t) ∈ ∂E} ∈ [0,+∞] the deterministic
hitting time of ∂E.

Jump intensity λ. The process can also jump at random times whose distribution is charac-
terized by a jump intensity λ : E → R+. The more weight λ gives to a state z ∈ E, the more
likely the process is to jump when it passes through this state. Assuming the process is in state
z ∈ E at time s > 0, we note Tz the random waiting time before the next jump starting from
z. Analogous to the jump times of an inhomogeneous Poisson process, its survival function is
given by:

P (Tz > t | Zs = z) = 1t<t∂z
exp

(
−
∫ t

0

λ (Φz(u)) du
)
. (1)

Jump kernel K. When the process jumps from a state z− ∈ E, the arrival state is chosen ran-
domly among the other states according to the jump kernel Kz− of probability density function
z 7→ K(z−, z) according to a reference measure νz− on E. By convenience, the jump kernel
will also refer to its density K.

Probability density function of a PDMP trajectory. Let E denote the set of PDMP trajec-
tories with values in E that are feasible according to (Φ, λ,K). The reference measure ζ on E
to construct the probability density function of a PDMP trajectory has been made explicit in [3].

Let Z = (Zt)t∈[0,tmax]
∈ E be a PDMP trajectory and n(Z) its jump count (number of events

occurring before time tmax). Let z0 be the initial state of the trajectory, t0 the waiting time before
the first jump, and for k = 1, . . . ,n(Z) − 1 we note zk the state of the process after the k-th
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jump, tk the waiting time between the k-th and the (k + 1)-th jump and finally tn(Z) = t∂zn(Z)
=

tmax −
∑n(Z)−1

k=0 tk the waiting time between the last jump and the end of simulation at time
tmax. The probability density function π of the PDMP evaluated at the trajectory Z is then:

π(Z) =

n(Z)∏
k=0

[λ (Φzk(tk))]
1
tk<t∂zk×exp

[
−
∫ tk

0

λ (Φzk(u)) du
]
×

n(Z)−1∏
k=0

K (Φzk(tk), zk+1) . (2)

It is worth noting that evaluating the density at a previously simulated trajectory is compu-
tationally inexpensive since there is no need to recompute the flow. From here on, we assume
that E and Φ are fixed. The probability density function π of the PDMP, and consequently its
probability distribution, can be described by the couple (λ,K) which captures all the stochastic
properties of the process.

Modeling industrial systems: the spent fuel pool case. We use the spent nuclear fuel pool
[7] as an example to demonstrate how the formal definition of a PDMP can be applied to an
industrial system. The pool contains fuel at the bottom, and the water in the pool is heated by
the fuel. If a critical volume of water evaporates, the system fails. To prevent this, the system
uses sealed circuits connected by heat exchangers to transfer heat from an external cold water
source to the pool water. The system is also connected to a general power supply. In case of
any issues, there are two other identical lines, a backup electrical generator for each of the three
lines, and a second water source that only the third line can access. There are fifteen components
in total, including the four electrical generators, the three circuits for each of the three lines, and
the two water source accesses. Each component has its own failure rate and repair rate, as given
in table 2. The system’s operation is depicted in fig. 1.

Figure 1: Spent fuel pool representation.

The position of the PDMP is the temperature and the level of the water in the pool. The
mode is the status of each component (active: 1, inactive: 0 or broken: -1). The state space
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Physical parameters Value Description
r 2.106× 1010 J · h−1 Residual power of the fuel.
C 4180 J · kg−1 · °K−1 Mass heat capacity.
ρ 990 kg · m−3 Density of the water.
A 77m2 Area of the pool.
x
(1)
S 15 °C Temperature of the water sources.
Q 550m3 h−1 The debit water.
l 2.257× 106 J · kg−1 Latent heat of vaporization.

tmax 3600 h Duration of the mission.
x
(2)
0 19m Initial level of water in the pool.

x
(2)
min 16m Critical threshold of the level of water in the pool.

Table 1: Physical parameters of the SFP. Values taken from [7].

is therefore R2 × {−1, 0, 1}15. We note Xt = (X
(1)
t , X

(2)
t ) the position of the process at time

t ≥ 0 with X
(1)
t the temperature of the water in the pool in °C and X

(2)
t the water level in the

pool in meters (m). The evolution of these variables is described by the differential equations:

dX
(1)
t

dt
= 1

X
(1)
t <100

× r + ρCQ(X
(1)
t − x

(1)
S )1Mt /∈MD

ρCAX
(2)
t

(3)

dX
(2)
t

dt
= −1

X
(1)
t =100

× r

ρCAl
(4)

where the physical parameters are given in the table 1 and MD is the subset of every mode in
M such that the water in the pool is no longer cooled (for example any mode such that the four
generators are broken belongs to MD ). As soon as the water is no longer cooled, there is a first
deterministic hitting time for the water to reach 100 °C and then a second for the water level in
the pool to reach the critical threshold.

Under distribution π0, each component cj has a jump rate λ
(j)
0 which depends on its status

and on the values of the physical variables of the system. The jump intensity of the PDMP in a
state z ∈ E is the sum of the jump rates of the components in state z: λ0(z) =

∑15
j=1 λ

(j)
0 (z). At

each jump from state z−, a component cj is randomly selected with probability λ
(j)
0 (z−)/λ0(z

−)
and changes status (it is repaired if it was down, and fails otherwise). The system automatically
reconfigures itself by enabling or disabling components so that only the necessary components
are active. Here, the higher the water temperature, the more often the circuits of the three lines
will break and the longer they will take to repair.

Supplementary examples of the use of PDMPs to model industrial systems can be found in
[1].

3 IMPORTANCE SAMPLING FOR PDMPs

We are looking for the probability of failure of an industrial system whose operation is mod-
eled by the trajectory of a PDMP. Let us note D the subset of faulty trajectories of E . Our
objective is to estimate P := Pπ0 (Z ∈ D) where π0 is the nominal distribution of the process
with jump intensity λ0 and jump kernel K0 (in practice given by the jump rates of the system
components).
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Component Marginal jump intensity λ
(j)
0 for j = 1, . . . , 15

ci when broken when inactive when active

c1 = G0 4 · 10−2 4 · 10−6 6 · 10−6

ci+1 = Gi, i = 1, 2, 3 8 · 10−2 2 · 10−6 30 · 10−6

c5 = S1 1 · 10−2 4 · 10−6 20 · 10−6

c6 = S2 3 · 10−2 1 · 10−6 5 · 10−6

c6+i = Li,1, i = 1, 2, 3 (6− 0.03X
(1)
t ) · 10−2 (1 + 0.05X

(1)
t ) · 10−6 (3 + 0.1X

(1)
t ) · 10−6

c9+i = Li,2, i = 1, 2, 3 (6− 0.03X
(1)
t ) · 10−2 (1 + 0.05X

(1)
t ) · 10−6 (3 + 0.1X

(1)
t ) · 10−6

c12+i = Li,3, i = 1, 2, 3 (6− 0.03X
(1)
t ) · 10−2 (1 + 0.05X

(1)
t ) · 10−6 (3 + 0.1X

(1)
t ) · 10−6

Table 2: Marginal jump intensity of each component of the spent fuel pool.

A crude Monte Carlo (CMC) provides a natural, unbiased and consistent estimator of P .

P̂CMC :=
1

N

N∑
k=1

1Zk∈D with Z1, . . . ,ZN
i.i.d.∼ π0. (5)

Since it takes an average of N simulations to observe one realization of an event of probability
1/N , it is clear that a CMC method is not well suited to the estimation of very small probabil-
ities. More precisely, the smaller P is, the larger the variance of P̂CMC compared to its mean.
We will therefore use a variance reduction method.

Classical importance sampling. Importance sampling is one the most popular variance re-
duction methods for rare event simulation. The idea is to generate the random variable (or in
our case, the random process) not according to the original distribution π0 but according to an
auxiliary distribution q more likely to realize the rare event and we then correct the bias by intro-
ducing the likelihood ratio π0

q
in the probability estimator. We assume that supp(q) ⊂ supp(π0)

(if a trajectory is feasible with q, it is feasible with π0 since they both are densities on E ).

Pπ0(Z ∈ D) = Eπ0 [1Z∈D ] = Eq

[
1Z∈D

π0(Z)

q(Z)

]
. (6)

The importance sampling estimator is simply the CMC estimator of the expectation in the
right-hand side in eq. (6). It is therefore also a consistent and unbiased estimator of P .

P̂ IS
N =

1

N

N∑
k=1

1Zk∈D
π0(Zk)

q(Zk)
with Z1, . . . ,ZN

i.i.d.∼ q. (7)

The variance of this estimator relies on the choice of q. The optimal density qopt : Z 7→
1
P
1Z∈D π0(Z) ∝ π0(Z | Z ∈ D) produces an estimator with zero variance but on the one hand

its normalization constant is precisely the quantity we want to estimate and on the other hand
we are not supposed to know how to simulate Z in D proportionally to the nominal density π0.

Committor function. This optimal formulation can be further refined in the case of PDMPs.
We have seen that choosing an importance distribution q is equivalent to choosing a couple
(λ,K). The optimal couple (λopt, Kopt) corresponding to qopt depends on Uopt the committor
function of the process. The committor function is a key concept in transition phase theory, and
it is traditionally used in rare event simulation to define optimal strategies for dynamic methods,
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such as multiple splitting, rather than importance sampling. In our terms, the committor func-
tion associated with a stochastic process Z and an event {Z ∈ D} gives the probability that the
trajectory Z will realize the event {Z ∈ D} before a given time tmax, given the current state of
the trajectory. Formally, for a state z ∈ E and a time s > 0, the committor function is defined
as:

Uopt(z, s) := Eπ0 [1Z∈D | Zs = z] . (8)

To lighten the next equations, we also define a variant of the committor function, denoted U−
opt,

which returns the probability of the event given the current state of the process, with the addi-
tional assumption that the PDMP is about to jump immediately. Specifically, for any departure
state z− ∈ E and any time s > 0, U−

opt(z
−, s) is defined as:

U−
opt(z

−, s) :=

∫
E

Uopt(z, s)K(z−, z) dνz−(z). (9)

Optimal importance sampling for PDMPs. It was shown in [3] that the optimal jump in-
tensity λopt and the optimal jump kernel Kopt that produce a zero variance importance sampling
estimator are given by

λopt(Φz(t) ; s) = λ0(Φz(t))×
U−

opt (Φz(t), s+ t)

Uopt (Φz(t), s+ t)
, (10)

Kopt
(
z−, z ; s

)
= K0

(
z−, z

)
×

Uopt (z, s)

U−
opt (z−, s)

. (11)

These equations have a simple interpretation.

1. If the process is k times more likely to realize the event by jumping now in state z than
later, then the optimal jump intensity λopt evaluated at z should be k times larger than the
nominal jump intensity λ0 at this point.

2. And if the process is k times more likely to realize the event by jumping now in state z−

to a specific state z than by jumping randomly according to K0, then the optimal jump
kernel Kopt should be k times larger than K0 at these points.

Therefore, knowing Uopt is sufficient to construct qopt and thus an optimal estimator of P . In
practice, Uopt is not known, but it can be approximated. The cross-entropy method (presented
in section 5) allows us to approximate Uopt using a parametric family of approximations, rather
than restricting ourselves to a single approximation. The best candidate in the family is sequen-
tially updated over the course of simulations. The challenge is thus to determine a good family
of proxy candidates for Uopt.

4 FAULT-TREE-BASED IMPORTANCE SAMPLING

The first intuition that we can have on the committor function is that it indicates the level of
degradation of the system. To approximate the committor function, a family of functions that
increases with the number of broken components has been proposed in [3]. This approach has
shown promising results on simple systems, such as a small group of components in parallel.
Our goal is to extend this approach to large, complex systems.

In a complex industrial system, the impact of component failures can vary greatly, and the
system’s reliability depends on redundant safety measures and the specific functions of different
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component groups. Therefore, for the system to fail, either an implausibly large number of
components must fail (resulting in unstable likelihood ratios), or the right components must fail
at the right time.

Fault tree analysis. Fault tree analysis [5] is a set of methods designed to identify the multiple
possible causes of system failure. The tree allows, in the form of combinations of elementary
events and logic gates, to represent the possible scenarios backwards, from the system failure
to its initial state.

The current assumption is that the system is coherent, meaning that a component failure
cannot prevent the system failure nor can the repair of one component cause it. Using the
fault tree, we can easily determine the unique decomposition of the system into minimal path
sets (MPS). A path set is a group of components that, if all are functioning, ensure the proper
operation of the system. A path set is minimal if it contains no other path set. Conversely,
breaking at least one component in each MPS ensures system failure. Each MPS can be thought
of as a barrier that must be overcome in order to cause system failure. A function that increases
with the number of MPS with at least one broken component can therefore provide a useful
indication of how close the system is to failure.

The eight MPS of the spent fuel pool can be visualized on the series/parallel diagram in
fig. 2.

Figure 2: Decomposition of the spent fuel pool. MPS are vertical combinations of components (e.g. G0 , S1,
L1,1, L2,1, L3,1).

Family of approximations of Uopt. We are now looking for a parametric family of functions
that increase with the number of MPS with at least one broken component. Let α be the param-
eter vector of this family and A ⊂ Rdα be the parameter space associated with it. Inspired by
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the formula proposed in [3], we suggest:

Uα(z, s) := exp
{( dMPS∑

i=1

αi1βz≥i

)2}
, α = (αi)

dMPS
i=1 , (12)

where dMPS is the number of MPS of the system and βz is the number of MPS with at least one
broken component in the state z ∈ E. The form x 7→ exp(x2) guarantees that the ratios U−

α/Uα

are increasing in βz. Two comments on this family of functions:

• When dMPS is large, the vector α contains many parameters to optimize. It is possible to
restrict ourselves to a smaller vector α̃ by imposing the equality of several coordinates.
For example, to get a vector α ∈ Rdα from α̃ ∈ Rdα̃ with dα = k × dα̃ we impose
αi = α̃⌊ i−1

k
⌋+1 for i = 1, . . . , dα.

• Uα ≥ 1 whereas Uopt is a probability. However, Uopt only appears in the ratios U−
opt/Uopt or

its inverse, so we only seek to approximate it up to a multiplicative constant.

As for Uopt, we define respectively U−
α , λα and Kα by:

U−
α (z

−, s) =

∫
E

Uα(z, s)K(z−, z) dνz−(z), (13)

λα(Φz(t) ; s) = λ0(Φz(t))×
U−
α (Φz(t), s+ t)

Uα (Φz(t), s+ t)
, (14)

Kα

(
z−, z ; s

)
= K0

(
z−, z

)
× Uα (z, s)

U−
α (z−, s)

. (15)

We can therefore construct the family of importance distributions (qα)α∈A on E from the
importance jump intensity and importance jump kernel (λα, Kα)α∈A.

5 ADAPTIVE CROSS-ENTROPY PROCEDURE

We are looking for a candidate within the family (qα)α∈A as close as possible to the target
distribution qopt in the sense of the Kullback-Leibler divergence:

argmin
α∈A

DKL (qopt∥qα) = argmin
α∈A

Eqopt

[
log

(
qopt(Z)

qα(Z)

)]
= argmin

α∈A
Eπ0 [−1Z∈D log (qα (Z))] (16)

We used qopt(Z) = 1
P
1Z∈Dπ0(Z) to obtain the 2nd equality. The sequential minimization of

this last expectation is called cross-entropy procedure [2].

Sequential algorithm. The function α 7→ Eπ0 [−1Z∈D log (qα (Z))] is estimated by impor-
tance sampling under an initial instrumental distribution qα(1) , we determine α(2) which mini-
mizes this estimate and we repeat the scheme. To save the simulation budget, we reuse at each
iteration all the trajectories already drawn to perform the minimization step. Similarly, all the
trajectories generated during the algorithm are recycled to produce the final estimator of P . To
summarize, at iteration l ∈ N∗:
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1. Simulation phase. Generate nl trajectories Z(l)
1 , . . . ,Z(l)

nl

i.i.d.∼ qα(l) .

2. Optimization phase. Update the parameter of the instrumental distribution with the l last
samples drawn

(
Z(1)

k

)n1

k=1
, . . . ,

(
Z(l)

k

)nl

k=1
:

α(l+1) = argmin
α∈A

{
−

l∑
r=1

nr∑
k=1

1Z(r)
k ∈D

π0

(
Z(r)

k

)
qα(r)

(
Z(r)

k

) log [qα(Z(r)
k

)]}
(17)

At the final iteration L (with Nl =
∑L

l=1 nl), we reuse all past samples to get the final estimator
of P :

P̂NL
=

1

NL

L∑
q=1

nl∑
k=1

1Z(l)
k ∈D

π0

(
Z(l)

k

)
qα(l)

(
Z(l)

k

) (18)

Asymptotic optimality and confidence interval. Using theorems 2 and 3 from [6], we can
determine sufficient criteria to ensure the consistency and asymptotic normality of the estima-
tor eq. (18).

Theorem 1. If A is a compact set, if αopt ∈ A is the only minimizer of DKL (qopt∥qα) and if :

1. the functions λ, K, and (Uα)α∈A are bounded from below and above on their support by
positive constants,

2. there is tε > 0 such that t∂z ≥ tε for any z− ∈ ∂E and any z ∈ supp K (z−, ·),

then, with V (α) = Eπ0

[
1Z∈D

π0(Z)
πα(Z)

]
− P 2, we have :

α(L) a.s−−−→
L→∞

αopt and
√
NL

(
P̂NL

− P
)

d−−−→
L→∞

N (0, V (αopt)) . (19)

The asymptotics can therefore be taken either in the number of iterations L or in the size of
the last two samples nL−1 and nL. These are two different yet specific ways to make the total
number of simulated trajectories tend towards infinity. The proof of this theorem can be found
in [4]. We can also propose a consistent estimator of the asymptotic variance V (αopt):

σ̂2
NL

=
1

NL

L∑
q=1

nl∑
k=1

1Z(l)
k ∈D

π0

(
Z(l)

k

)2
qα(l)

(
Z(l)

k

)2 − P̂ 2
NL

. (20)

It follows that an asymptotic confidence interval for P with the conditions of theorem 1 is given
by:

P
(
P ∈

[
P̂nl

− q1−a/2 σ̂nl
n
−1/2
l ; P̂nl

+ q1−a/2 σ̂nl
n
−1/2
l

])
−→ 1− a, (21)

where q1−a/2 is the (1− a/2)-quantile of the N (0, 1) distribution.

6 NUMERICAL EXPERIMENT

Our adaptive importance sampling (AIS) method is applied to the spent fuel pool system
with the parameter values given in section 2 and compared to the CMC method.
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Implementation choices.

• The optimization routine called at each step of the cross-entropy procedure to minimize
eq. (17) is the method minimize(·,method=BFGS) from the scipy.optimize
toolbox in Python (the gradient of the objective function is explicitly known).

• The AIS method is initialized with a vector α whose starting values are all identical and
chosen so that the probability that at least one component failure occurs before the end of
the simulation is greater than 1/3.

• At each iteration, we generate trajectories until we have nCE = 10 faulty trajectories
before updating α for N ∈ {102, 103} and nCE = 50 for N = 104. We stop the algorithm
when the budget N is reached.

Results. We compare the CMC method and the AIS method for different sample sizes in ta-
ble 3. Looking at the confidence intervals, we see that the AIS method requires between 1000
and 10,000 times less simulations than CMC method to estimate a probability of the order of
10−5 with the same level of accuracy.

Method N Estimated probability P̂ Coeff. of var. 95% confidence interval

105 2× 10−5 223.60
[
0 ; 4.77× 10−5

]
CMC 106 1.3× 10−5 277.35

[
5.93× 10−6 ; 2.01× 10−5

]
107 1.77× 10−5 237.68

[
1.51× 10−5 ; 2.03× 10−5

]
102 2.18× 10−5 4.69

[
1.76× 10−5 ; 4.18× 10−5

]
AIS 103 2.19× 10−5 3.01

[
1.78× 10−5 ; 2.60× 10−5

]
104 1.99× 10−5 1.01

[
1.96× 10−5 ; 2.03× 10−5

]
Table 3: Comparison of CMC and AIS on the SFP case. The coefficient of variation is σ̂N/P̂N with σ̂N from
eq. (20) and P̂N from eq. (18).

Since the confidence interval is constructed from the plug-in estimator of the variance, it is
preferable to ensure the stability of our method. In fig. 3, we present 50 different realizations of
a confidence interval obtained with the AIS method for a sample size of N = 103, and compare
them to the confidence interval obtained with the CMC method for a sample size of N = 107.
Once again, we observe that most of the intervals obtained by the AIS method outperform the
CMC interval. Even the worst interval obtained by AIS returns a range of [1, 3.5]×10−5, which
is already a good estimate for a sample of this size. The AIS method therefore appears to be
highly stable.

7 CONCLUSION

Our methodology provides a comprehensive approach for assessing the reliability of hybrid
dynamic industrial systems. Since the probability of system failure is typically very small, its
crude Monte Carlo estimation requires the simulation of a large number of trajectories of the
piecewise deterministic Markov process modeling the system. We have proposed an adaptive
importance sampling method to estimate this failure probability accurately while simulating as
few PDMP trajectories as possible.
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Figure 3: Comparison of 95% confidence intervals. Under conditions of table 3, 50 confidence intervals were
drawn from the AIS method with N = 103 , and 1 confidence interval was drawn from the CMC method with
N = 107.

We have emphasized in this work the relevance of the committor function to produce efficient
importance sampling estimators. We have proposed a parametric family of approximations for
the committor function based on the decomposition of the system into minimal path sets (MPS).
Our AIS algorithm is based on a cross-entropy procedure with a recycling scheme of past sam-
ples to sequentially improve the importance distribution. We have given guarantees for the
convergence and the asymptotic normality of the estimator.

We have compared the efficiency of our AIS method to a standard CMC method on a test
case from nuclear industry: the spent fuel pool. The AIS method has outperformed the CMC
method, reducing the variance by a factor of about 104. We have run the AIS method 50 times,
and all the confidence intervals produced were good, indicating that the method is robust and
reliable. Moreover, the AIS method has a short ”warm-up time” and can produce accurate es-
timators with sample sizes as small as 102. These features give the AIS method an advantage
over the CMC method, even in situations where the occurrence probability P is moderately
small (between 10−2 and 10−4).

Overall, our methodology provides a powerful tool for estimating the reliability of hybrid
dynamic industrial systems, and we recommend its use in all scenarios.
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